Extending graph homomorphism and simulation for real life graph matching

نویسنده

  • Yinghui Wu
چکیده

Among the vital problems in a variety of emerging applications is the graph matching problem, which is to determine whether two graphs are similar, and if so, find all the valid matches in one graph for the other, based on specified metrics. Traditional graph matching approaches are mostly based on graph homomorphism and isomorphism, falling short of capturing both structural and semantic similarity in real life applications. Moreover, it is preferable while difficult to find all matches with high accuracy over complex graphs. Worse still, the graph structures in real life applications constantly bear modifications. In response to these challenges, this thesis presents a series of approaches for efficiently solving graph matching problems, over both static and dynamic real life graphs. Firstly, the thesis extends graph homomorphism and subgraph isomorphism, respectively, by mapping edges from one graph to paths in another, and by measuring the semantic similarity of nodes. The graph similarity is then measured by the metrics based on these extensions. Several optimization problems for graph matching based on the new metrics are studied, with approximation algorithms having provable guarantees on match quality developed. Secondly, although being extended in the above work, graph matching is defined in terms of functions, which cannot capture more meaningful matches and is usually hard to compute. In response to this, the thesis proposes a class of graph patterns, in which an edge denotes the connectivity in a data graph within a predefined number of hops. In addition, the thesis defines graph pattern matching based on a notion of bounded simulation relation, an extension of graph simulation. With this revision, graph pattern matching is in cubic-time by providing such an algorithm, rather than intractable. Thirdly, real life graphs often bear multiple edge types. In response to this, the thesis further extends and generalizes the proposed revisions of graph simulation to a more powerful case: a novel set of reachability queries and graph pattern queries, constrained by a subclass of regular path expressions. Several fundamental problems of the queries are studied: containment, equivalence and minimization. The enriched reachability query does not increase the complexity of the above problems, shown by the corresponding algorithms. Moreover, graph pattern queries can be evaluated in cubic time, where two such algorithms are proposed. Finally, real life graphs are frequently updated with small changes. The thesis investigates incremental algorithms for graph pattern matching defined in terms of graph simulation, bounded simulation and subgraph isomorphism. Besides studying the results on the complexity bounds, the thesis provides the experimental study verifying that these incremental algorithms significantly outperform their batch counterparts in response to small changes, using real-life data and synthetic data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Homomorphism Revisited for Graph Matching

In a variety of emerging applications one needs to decide whethera graph G matches another Gp, i.e., whether G has a topologicalstructure similar to that of Gp. The traditional notions of graphhomomorphism and isomorphism often fall short of capturing thestructural similarity in these applications. This paper studies revisions of these notions, providing a full treatment from co...

متن کامل

ON THE MATCHING NUMBER OF AN UNCERTAIN GRAPH

Uncertain graphs are employed to describe graph models with indeterministicinformation that produced by human beings. This paper aims to study themaximum matching problem in uncertain graphs.The number of edges of a maximum matching in a graph is called matching numberof the graph. Due to the existence of uncertain edges, the matching number of an uncertain graph is essentially an uncertain var...

متن کامل

A Incremental Graph Pattern Matching

Graph pattern matching is commonly used in a variety of emerging applications such as social network analysis. These applications highlight the need for studying the following two issues. First, graph pattern matching is traditionally defined in terms of subgraph isomorphism or graph simulation. These notions, however, often impose too strong a topological constraint on graphs to identify meani...

متن کامل

Matching Integral Graphs of Small Order

In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...

متن کامل

Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms

A method for segmentation and recognition of image structures based on graph homomorphisms is presented in this paper. It is a model-based recognition method where the input image is over-segmented and the obtained regions are represented by an attributed relational graph (ARG). This graph is then matched against a model graph thus accomplishing the model-based recognition task. This type of pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011